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In amyloid fibrils, b-strand conformations of polypeptide

chains, or segments thereof, are perpendicular to the fibril axis,

but knowledge of their three dimensional structure at atomic

level of detail is scarce. Two types of computational

approaches have been developed recently for investigating the

aggregation propensity of peptides and proteins and

identifying the segments most prone to form fibrils (hot spots).

The physicochemical properties of the natural amino acids (e.g.

b-propensity, hydrophobicity, aromatic content and charge)

have been used to derive phenomenological models able to

predict changes in aggregation rate upon mutation, as well as

absolute rates and hot spots. Applications of these models to

entire proteomes have provided evidence that intrinsically

disordered proteins are less amyloidogenic than globular

proteins. In the second type of approach, amyloidogenic

polypeptides have been decomposed into overlapping

segments, and atomistic simulations of three or more copies of

each segment have been performed to obtain insights into

aggregation propensity and structural details of the ordered

aggregates (e.g. turn regions).

Addresses

Department of Biochemistry, University of Zurich, CH-8057 Zurich,

Switzerland

Corresponding author: Caflisch, Amedeo (caflisch@bioc.unizh.ch)
Current Opinion in Chemical Biology 2006, 10:437–444

This review comes from a themed issue on

Analytical techniques

Edited by Saul Tendler and Ehud Gazit

Available online 1st August 2006

1367-5931/$ – see front matter

# 2006 Elsevier Ltd. All rights reserved.

DOI 10.1016/j.cbpa.2006.07.009

Introduction
b-sheet structures, which are, together with a-helices,

one of the most common regular conformations of the

polypeptide chain in folded proteins, have an intrinsic

tendency to favor the formation of amyloid fibrils. Amy-

loid fibrils consist of ordered b-aggregates of the same

protein in which the (poly)peptide chains are in an

extended b-conformation, with their backbone perpen-

dicular to the axis of the fibril [1]. Such b-aggregation is

typical of amyloid diseases, which include Alzheimer’s,

Parkinson’s and type II diabetes, as well as the spongi-

form encephalopathies. There is currently no effective

treatment against these progressive disorders, most of
www.sciencedirect.com
which affect the brain in a devastating way. Therefore,

it is of fundamental medical interest to understand the

mechanisms of fibrillogenesis with the ultimate goal of

determining the relative toxicity of (soluble) oligomers,

protofibrils and mature fibrils, and designing small mole-

cules that interfere with, and ideally inhibit, the forma-

tion of the toxic species. Two important and related issues

regarding amyloid fibril formation are the specificity with

which the amino acid sequence determines b-aggregation

propensity and the atomic details of the fibril structure.

The few atomic-level structures of amyloid fibrils that are

available have been attained by X-ray microcrystallogra-

phy data [2], by combining a range of biophysical tech-

niques including fluorescence and NMR spectroscopy

[3], or by applying quenched hydrogen–deuterium

exchange NMR together with pairwise mutagenesis

[4�]. Because of the difficulties in obtaining detailed

structural information by X-ray crystallography or solution

NMR spectroscopy, computational approaches are also

needed. These approaches could help determine the

short segments of amyloid-like polypeptides that share

the same biophysical properties of the full-length proteins

and identify those elements that are essential for the

formation of amyloid fibrils. Recent review articles on

computational studies of fibril formation have focused on

the design of model systems (e.g. short peptides) for

amyloid formation [5�] and on approaches based on

molecular dynamics simulations [6–8].

The focus of this review is on recent approaches to predict

aggregation rates and amyloidogenic segments of poly-

peptide sequences. The emphasis is on phenomenologi-

cal models that use the physicochemical properties of the

sidechains, and computational methods based on atomis-

tic descriptions of b-aggregation. These approaches have

provided interesting insights into the complex process of

ordered aggregation. Most of these methods and their

applications were published in 2004–2006 and are still

subject of intense investigations.

Phenomenological models based on
physicochemical properties
Chiti and coworkers [9] have been the first to quantita-

tively analyze the effects of mutations on polypeptide

aggregation rates. They have observed that hydrophobi-

city, charge and propensity to convert from an a-helical to

a b-sheet conformation influence the aggregation rate

under conditions at which the considered proteins are

mainly unstructured. On the assumption that these three

factors are independent of each other, they have proposed

an empirical model to predict the effect of a single-point
Current Opinion in Chemical Biology 2006, 10:437–444
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mutation on the aggregation rate. Their linear three-

parameter model approximates the natural logarithm of

the ratio of the aggregation rate constants of the mutant

(rate_mutant) and wild-type (rate_wt) peptide or protein

(ln[rate_mutant/rate_wt]). When lag (i.e. nucleation) and

fibril-elongation phases were distinguishable in the

kinetic profiles of aggregation, only the elongation rate

was considered. The three parameters were fitted using a

set of 28 mutations of human muscle acylphosphatase and

a correlation coefficient of 0.756 and slope of 0.96 were

obtained. The cross-validation, on a set of 27 single-point

mutants of amyloidogenic peptides not used to fit the

model, yielded values of 0.85 and 0.94 for the correlation

coefficient and slope, respectively [9]. Although the pre-

dictive ability is very high, it is important to note that the

12 mutants with different net charges were predicted with

an average error of 1.08 and a maximal error of 3.39 (for

the R406W mutant of tau protein), whereas the average

and maximal experimental errors were 0.7 and 1.5, respec-

tively. Such relatively large deviations in predicting ln(ra-

te_mutant/rate_wt) might originate from the fact that

charge and hydrophobicity (i.e. two of the three proper-

ties used in the linear model of Chiti and coworkers) are

not completely independent from each other. In fact, the

predictive power is much higher for the 15 mutations not

involving charged residues, with average and maximal

error of 0.35 and 1.03 (for the S20G mutant of the human

islet amyloid polypeptide), respectively. Additional evi-

dence for a systematic error related to charged sidechains,

in particular arginine, can be found in a recent paper by

Chiti and coworkers [10] where the decrease in aggrega-

tion rate for the acylphosphatase mutants F22R, Y91R

and Y98R is overestimated by 0.9, 1.2 and 0.5 logarithmic

units, respectively. However, a very high correlation was

observed recently between relative aggregation propen-

sity, predicted by the model of Chiti and coworkers [9],

and in vivo fluorescence of different single-point mutants

of the 42-residue human beta-amyloid peptide (Ab42) in

a green fluorescent protein fusion [11].

To predict absolute aggregation rates, DuBay and cow-

orkers have extended the three-parameter equation [9]

into a seven-parameter formula that includes intrinsic

properties of the polypeptide chain and extrinsic factors

related to the environment (e.g. peptide concentration,

pH value and ionic strength of the solution) [12]. The

intrinsic properties are hydrophobicity, charge and the

patterns of alternating hydrophobic–hydrophilic residues

[13], whereas the propensity to convert an a-helical to a

b-sheet conformation (one of the three factors of [9]) is

not taken into account in the seven-parameter formula.

To fit the seven parameters, they have used experimental

data from 59 mutants of acylphosphatase, as well as data

from 18 mutants of amyloidogenic peptides (including

Ab40, Ab42, human islet amyloid polypeptide and prion

protein peptide PrP106-126) and proteins. Despite the

large number of data points used in the fitting (77
Current Opinion in Chemical Biology 2006, 10:437–444
experimentally measured elongation rates), the multi-

plicative parameters for pH and concentration could

not be fitted in a robust way because of the limited size

of the database, with most experiments performed at a

single value of pH (5.5) and concentration (0.04 mM). As

explicitly mentioned by the authors, the main limitation

of the seven-parameter model is that all residues in the

polypeptide sequence have the same relative importance,

which is not consistent with a plethora of experimental

observations [4�,14,15�] and simulation results [16�].

By focusing on the physicochemical properties that deter-

mine ordered aggregation, Tartaglia and coworkers [17]

have developed a phenomenological model without free

parameters to predict changes in elongation rate upon

mutation. The physicochemical properties used are the

change in b-propensity upon mutation [18,19], the

change in number of aromatic residues [20–22] and the

change in total charge. Furthermore, the ratio of acces-

sible surface area is taken into account if the wild-type

and mutant sidechains are both polar or both apolar,

whereas the dipole moment of the polar sidechain is used

in the case of apolar to polar (or polar to apolar) mutation.

The model of Tartaglia and coworkers [17] has a more

complicated functional form than the linear three-para-

meter model of Chiti and coworkers [9] but has the

advantage that it does not require any fitting, being

devoid of free parameters. Furthermore, it does not suffer

of the partial redundancy of charge and hydrophobicity,

which is present in the empirical models discussed

above [9,12]. Interestingly, the model of Tartaglia repro-

duced the relative aggregation propensity of a set of 26

heptapeptide sequences, which were predicted to favor

an in-register parallel b-sheet arrangement [17] by using

molecular dynamics simulations of three heptapeptides in

a box [23,24].

Recently, Tartaglia and coworkers [25�] have further

developed their model to predict absolute elongation

rates and identify aggregation-prone segments. The

extended model distinguishes between parallel and anti-

parallel b-sheet arrangement according to the preponder-

ance of apolar versus polar residues. A positional effect

taken into account, but rewarded only in the case of

antiparallel arrangement, is the number of sidechain pairs

with opposite charges in symmetric position with respect

to the center of the considered segment, such as Lys and

Glu in the Ab segment KLVFFAE. An essential element

in the derivation of the model has been the analysis of a

large pool of b-aggregating peptide sequences designed

by a computational approach based on implicit solvent

molecular dynamics and genetic algorithm optimization

in sequence space (Tartaglia and Caflisch, unpublished

results). Although some of the physicochemical proper-

ties in the model of Tartaglia and coworkers [17,25�] are

similar to those used in the models of Chiti and coworkers

[9,12], it is important to distinguish that the former is a
www.sciencedirect.com
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phenomenological model without parameters, whereas

the latter is an empirical approach based on parameter

optimization for a multiterm equation. Comparable

results have been reported on the test set of experimen-

tally measured aggregation rates used to develop these

models [12,25�]. Although there is no in-depth compar-

ison of these two models on a large set of experimental

data not used to derive them, the seven-parameter

approach is not expected to have a better predictive

ability. One reason is that positional effects are explicitly

taken into account in the model of Tartaglia and cow-

orkers [25�], whereas the multiparameter approach is

mainly based on amino acid composition [12]. Further-

more, the multiparameter approach cannot be used to

identify b-aggregating segments, as explicitly mentioned

by the authors [12]. Recently, the model of Chiti, Ven-

druscolo and coworkers [12] has been modified for the

prediction of aggregation-prone segments of proteins and

validated on Ab42, a-synuclein and the tau protein [26].

The strongest contribution in their new model is hydro-

phobicity (see Table 2 of [26]) so that the approach is

likely to overpredict segments with many apolar residues

and miss some polar amyloidogenic segments, such as

NNQQNY [2] and the polyglutamines.

Serrano and coworkers [27] have developed an approach

based on secondary structure propensity and estimation

of desolvation penalty (TANGO) to predict b-aggregat-

ing regions of a protein sequence as well as mutational

effects. In contrast to the models discussed above,

TANGO takes into account the native state stability

by using the FOLD-X force field [28]. For each residue

in a polypeptide chain, TANGO evaluates the percent

occupancy of the b-aggregation conformation. A polypep-

tide is considered to have b-aggregation tendency if it

contains a segment of at least five consecutive residues

with a b-aggregation occupancy higher than 5%. TANGO

is based on the assumption that the probability of finding

more than two ordered segments in the same polypeptide

is negligible. The authors report that TANGO is useful

for quantitative comparison of relative aggregation pro-

pensities of mutants of a common sequence. However, it

is not possible to calculate absolute rates of aggregation

with TANGO, which provides only a qualitative compar-

ison between peptides or proteins differing significantly

in sequence.

Applications of phenomenological models
Proteome analysis of ordered aggregation

Serrano and coworkers [29�] have used TANGO to ana-

lyze the b-aggregation propensity of a set of nonredun-

dant globular proteins with an upper limit of 40%

sequence identity. They have provided evidence that

the b-aggregation tendency of all-a, all-b and mixed a/b

globular proteins as well as membrane-associated proteins

is fairly similar. Furthermore, in a set of 296 intrinsically

disordered proteins TANGO identified that aggregation-
www.sciencedirect.com
prone segments were three times fewer than in globular

proteins, indicating that the formation of a globular pro-

tein comes at the cost of a higher b-aggregation propen-

sity [29�]. The same authors have recently used TANGO

to investigate the aggregation propensity of proteins in 28

complete proteomes spanning all kingdoms of life [30].

They have shown that evolutionary pressure minimizes

the amount of strongly aggregating sequences. Moreover,

evolution has favored capping of amyloidogenic segments

by arginine, lysine and proline to improve selectivity for

chaperone binding [30].

The model developed to predict absolute rates and

aggregation-prone segments [25�] has been applied to

the proteomes of nine eukaryotes [31]. One interesting

finding is that proteomes of higher and more long-lived

eukaryotes contain fewer sequences with high b-aggrega-

tion propensity and are accrued in proteins with low b-

aggregation propensity. It was also observed that,

compared with random proteomes (obtained by shuffling

residues but keeping constant the number and length of

proteins as well as global amino acid composition), natural

proteomes are enriched in proteins with low b-aggregation

potential as well as proteins with high b-aggregation

potential. Such polarization is a consequence of a dual

evolutive requirement: the formation of a folded protein

structure with thermodynamically stable native state goes

at the cost of higher b-aggregation propensity (as suggested

previously [29�]), whereas intrinsically disordered proteins

must have low b-aggregation tendency [31]. A recent

application of the same phenomenological model to the

proteome of the yeast Saccharomyces cerevisiae indicates that

the evolutionary pressure has reduced the number of

proteins with b-aggregation tendency in cellular compart-

ments such as the nucleolus, characterized by a high

concentration of unfolded molecules (Tartaglia and

Caflisch, unpublished data).

Design of polypeptide mutants with reduced

aggregation propensity

One challenging application of the phenomenological

models is the prediction of a small mutation, ideally

single-point, resulting in a large change in aggregation

rate. The empirical model of Chiti and coworkers [9] was

used recently to suggest variants of the 32-residue pep-

tide hormone calcitonin to reduce its aggregation propen-

sity [32]. In fact, calcitonin is used in the treatment of

osteoporosis, Paget’s disease, hypercalcemia and muscu-

loskeletal pain, but its tendency to aggregate is a serious

problem during production, storage and administration.

The change in aggregation rate of more than 600 variants,

each with one to six mutated sidechains, was evaluated

with the three-parameter model [9], and the two mutated

calcitonin with the slowest predicted rate were tested in
vitro. Aggregation kinetics monitored by turbidity mea-

surements confirmed that their stability in solution is

higher than the wild-type human calcitonin. These two
Current Opinion in Chemical Biology 2006, 10:437–444
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variants have five and six mutations, of which three and

four are arginine, respectively, and the remaining two

threonine and serine. Hence, the reduction of aggregation

tendency (which was largely overestimated by the three-

parameter model, as reported in Table 1 of [32]) is not

surprising because human calcitonin is amidated at the

C-terminus and has only two oppositely charged sidechains

at neutral pH (D15 and K18). Therefore, the increase in

positive charge of the two variants due to the additional

arginine sidechains is expected to improve solubility.

Computational methods at atomic resolution
Despite much higher computational demand with respect

to the phenomenological models reviewed above, the

approaches based on molecular dynamics provide a struc-

tural interpretation of the b-aggregation profile, which is

very useful to rationalize the sequence dependence and

predict mutational effects on amyloid aggregation. For

instance, a significant decrease in the aggregation pro-

pensity of the N47S,N48S double-mutant of the 94-

residue N-terminal domain of the yeast prion-like protein

Ure2p was predicted with the molecular dynamics

approach of Cecchini and coworkers [16�] and validated

in vitro by monitoring the kinetics of aggregation using

the thioflavin T binding assay.

The methods reviewed in this section are based on

atomistic descriptions of the polypeptide chain. As such,

they cannot be used for proteomic analysis but they

provide detailed structural information, which is not

possible to obtain with the phenomenological models.

Methods based on templates from experimental

structures

Lopez de la Paz and coworkers [33] have been the first to

design sequences that fit to a structural template of an

ordered b-sheet aggregate. The sequence design was

carried out by using a rigid template of six hexapeptides

arranged in an antiparallel b-sheet, corresponding to the

backbone of the large single-layer b-sheet of the outer

surface protein A. Their design approach, which is based

on a force field and implicit solvation model, was origin-

ally developed to improve the thermodynamic stability of

b-sheet peptides [34], and specifically to try to solve the

inverse structure prediction problem of finding sequences

that fold into a given structure. They designed de novo the

amyloid peptide STVIIE [33], which was then used to

perform an exhaustive mutagenesis analysis [14]. Indivi-

dual residues of STVIIE were systematically replaced

with all natural amino acids except Cys. The positional

scanning of the STVIIE hexapeptide revealed that amy-

loid fibril formation is strongly dependent on the position

of the mutation. From the mutagenesis experiments,

Lopez de la Paz and Serrano derived a sequence pattern

that can be used to scan polypeptide sequences for six-

residue segments that are potentially amyloidogenic.

Their approach and pattern rely on the assumption that
Current Opinion in Chemical Biology 2006, 10:437–444
residue preferences at a given position are independent of

the residue types at other positions. This assumption

might result in a significant number of false positives.

As an example, at neutral pH the hexapeptides with

sequence E/D-E/D-V/L/S/W/F/N/Q-I/L/T/Y/W/F/N-F/

I/Y-E/D are predicted to be amyloidogenic by the pattern

of Lopez de la Paz and Serrano, but many (or even most)

of these 1176 hexapeptides are likely not to aggregate

because of electrostatic repulsion between the negative

charges. Moreover, the pattern fails to recognize known

fibril-forming hexapeptides, such as the segment

NFGAIL in the human islet amyloid polypeptide and

NNQQNY [2]. Despite these limitations, the authors

have provided evidence that highly amyloidogenic motifs

matching their pattern are underrepresented in natural

proteins and appear to be surrounded by residues that

inhibit their aggregating tendency, such as proline and

charged sidechains [14].

Recently, Eisenberg, Baker and coworkers [35] have used

the X-ray microcrystal structure of the cross-b spine

formed by the peptide NNQQNY [2] as a template to

identify amyloidogenic segments. Starting from the coor-

dinates of the atoms in the microcrystal, a set of 2511 near-

native structures (which the authors call 3D profile) was

generated by translational shifting of a four-stranded

parallel b-sheet with respect to a three-stranded parallel

b-sheet with antiparallel arrangement of the two

b-sheets. Each six-residue segment of the polypeptide

of interest was threaded onto each of the 2511 near-native

templates, and the energetic fit was evaluated using the

ROSETTADESIGN program [36]. The energy was eval-

uated for an infinite 1D periodic system. In this regard, it

has to be noted that the intra- and inter-b-sheet arrange-

ment of the peptides in the microcrystal might not be

representative of the (proto)fibril. For instance, being

derived from a microcrystal with 1D periodicity, the

X-ray structure of NNQQNY [2] does not show either

the b-sheet twist or the common fibril twist derived from

synchrotron X-ray diffraction patterns [37]. Another main

assumption of the 3D profile method is the in-register

parallel b-sheet structure, as observed in the microcrystal

[2]. In-register parallel arrangements favor the interac-

tions of hydrophobic and aromatic sidechains. Although a

preference for parallel b-sheet aggregates is expected for

polypeptide sequences with few charged sidechains,

short stretches with sidechains of opposite charge at

the termini might prefer the antiparallel arrangement

[14,25�,38].

Yoon and Welsh [39] have developed a structure-based

approach for detecting b-aggregation propensity of a

protein segment conditioned on the number of tertiary

contacts. Using a sliding seven-residue window, segments

with a strong b-sheet tendency in a tightly packed envir-

onment (i.e. with a high number of tertiary contacts) were

suggested to be local mediator of fibril formation. They
www.sciencedirect.com
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have investigated 2358 nonhomologous protein domains

and provided evidence that most proteins contain seg-

ments with significant hidden b-strand propensity.

Recently, the same authors have developed a procedure

based on an artificial neural network for the prediction of

contact-dependent secondary structure propensity [40].

An analysis of 1930 nonhomologous protein domains has

revealed that the a-helix and b-strand share similar

sequence context, and that the number of tertiary con-

tacts is an important determinant of the native secondary

structure.

Approaches based on molecular dynamics

There is a review on molecular dynamics simulations of

aggregation by Ruth Nussinov in this issue of Current
Opinion in Chemical Biology. Therefore, this subsection

focuses on two papers in which multiscale simulation

techniques were used to identify amyloidogenic stretches

and obtain the b-aggregation profile of polypeptides that

are known to aggregate in vitro.

Dokholyan and coworkers [41�] have investigated the

ordered aggregation propensity along the sequence of

the enzyme Cu, Zn superoxide dismutase (SOD1), sev-

eral mutations of which are linked to the familial form of

amyotrophic lateral sclerosis. In its native state, SOD1 is

homodimeric and each monomer adopts the Greek-key

fold, a b-barrel consisting of two four-stranded b-sheets

connected by two crossover loops. They have decom-

posed the SOD1 sequence into overlapping heptapep-

tides and performed a large number of explicit water

molecular dynamics simulations (each of 0.5 ns) of mono-

meric, dimeric and tetrameric segments. Each segment

was N-acetylated and C-amidated to reproduce the ori-

ginal context in the full-length sequence. The use of

overlapping peptide fragments to determine the amyloi-

dogenicity of individual residues ensures that the neigh-

boring sequences of a given residue modulate its

b-aggregation tendency. They have also run discrete

molecular dynamics of the SOD1 dimer with square-well

interaction potentials between beads (coarse-grained

polypeptide model with four beads for the backbone

atoms and two sidechain beads) according to contacts

formed in the native state. Such native-structure-based

Go model, derived using contact maps corresponding to

the monomeric state and dimeric interface, was supple-

mented with an additional energy term to favor the

formation of domain swapping interactions. A multipli-

cative coefficient in front of the domain swapping inter-

actions was used for regulating the degree of

intermonomer overlap, which represents the effective

concentration of the protein. With these two very differ-

ent polypeptide models and simulation protocols the

authors identified the same amyloidogenic regions in

the SOD1 sequence: the two termini, the b-strands 4

and 7, and the two crossover loops. A very interesting

suggestion based on the simulation study of Dokholyan
www.sciencedirect.com
and coworkers [41�] is that a high aggregation propensity

might result from the ‘synergistic’ placement of an amy-

loidogenic segment in a region of the protein that is most

likely to form intermolecular contacts under conditions

that destabilize the native state.

A simulation-based ‘divide-and-conquer’ approach was

recently proposed by Cecchini and coworkers [16�] to

obtain structural information on amyloidogenic polypep-

tides. The amino acid sequence was fragmented into

overlapping segments, which were capped at each of

the new termini. Decompositions into heptapeptide

and hendecapeptide fragments were performed to inves-

tigate effects related to peptide length. Implicit solvent

molecular dynamics simulations of oligomeric systems

(three or six peptides in a box) were performed for each

segment, starting from peptides well separated in space

(i.e. without intermolecular contacts). The use of an

implicit model of the solvent [42] allows for sampling

of several association–dissociation events in a timescale of

one microsecond, with each simulation requiring 10 or 25

days for three or six hendecapeptides, respectively. To

validate the structural stability of the ordered aggregates

observed in the implicit solvent runs, 50-ns control simu-

lations with explicit water molecules and counterions

were carried out for a subset of the segments. The

combined implicit-solvent–explicit-solvent simulation

approach provides information on the b-aggregation ten-

dency along the polypeptide sequence (i.e. the b-aggre-

gation profile) [16�]. Given the experimental evidence on

in-register parallel arrangement of Ab42 [4�] and the islet

amyloid polypeptide [43], aggregation simulations of

short stretches are a good approximation of the fibrillar

environment and the observations made on the stretches

can be extrapolated to full-length polypeptides. Thanks

to the atomic detail information provided by the mole-

cular dynamics simulations, the b-aggregation profile of

Ab42, the islet amyloid polypeptide and the N-terminal

domain of the yeast prion-like protein Ure2p could be

structurally characterized [16�]. For Ab42, secondary

structure analysis of the trajectories unveiled the pre-

sence of four turn-like sites: S8G9, G25S26, G29A30, and

G38V39 (Figure 1). Interestingly, the location of the first

three turns had been already suggested by solution NMR

spectroscopy [44], solid-state NMR spectroscopy [45] and

proline scanning mutagenesis [46], respectively.

Although the four sites with turn propensity could have

been detected by algorithms for secondary structure

prediction, the consequences of such propensity within

the context of an oligomeric system can be determined

only by the atomistic simulation approach. The identified

turn-like segments correspond to large drops in b-strand

propensity and are located at the borders of aggregation-

prone regions (see Figure 3 of [16�]). Hence, their specific

position on the sequence determines the location and

width of the aggregation hot-spots that are supposed to

drive amyloid fibril formation, and to have an influence on
Current Opinion in Chemical Biology 2006, 10:437–444
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Figure 1

Structural model of part of the Ab peptide obtained by molecular dynamics simulations of overlapping Ab fragments [16�]. The most populated

conformation of three H13HQKLVFFAED23 hendecapeptides is shown with carbon atoms in green, whereas the most populated conformation of

three A21EDVGSNKGAI31 hendecapeptides is shown with carbon atoms in magenta. The relative orientation of the two fragments was obtained

by overlapping the common part of the backbone (i.e. A21ED23). There is a striking similarity between this structural model and the one obtained

by a combination of NMR spectroscopy and mutagenesis [4�].
the fibrillar conformation of Ab42. After submission of the

work by Cecchini and coworkers [16�], a 3D structural

model of the Ab42 fibril was obtained by using hydrogen-

bonding constraints from quenched hydrogen–deuterium

exchange NMR spectroscopy and sidechain packing con-

straints from pairwise mutagenesis studies [4�]. Notably,

the 3D structural model shows parallel, in-register

b-sheets formed by residues 18–26 and 31–42, and a loop

at residues 26–30 in agreement with the molecular

dynamics simulation results (compare Figure 1 with

Figure 4c of [4�]).

Conclusions
Recent computational methods developed to improve the

understanding of amyloid fibril formation include phe-

nomenological models based on the physicochemical

properties of the sidechains (e.g. b-propensity, hydropho-

bicity, aromatic content and charge), as well as atomistic

simulation approaches. The former are simple, very effi-

cient and can be applied to entire proteomes. Amyloid
Current Opinion in Chemical Biology 2006, 10:437–444
fibrils formed by a short stretch of a peptide or protein

might have a different 3D structure than the fibril of the

full-length sequence. Yet, the predictive ability of the

models based on physicochemical properties [25�,26,27]

and experimental evidence [2,15�,22] indicate that the

amyloid-promoting part of a protein can be a short seg-

ment of the entire chain [47�]. These simple phenom-

enological models based on physicochemical properties

are able to predict aggregation rates with reasonable

accuracy and identify b-aggregation-prone fragments in

proteins. The success of these simple models, which use

only the protein sequence as input, is due to the regular

structural arrangement and the important role of side-

chains in b-sheet aggregates [14,15�,20,21,23].

Although they require large computational resources, the

multiscale approaches based on molecular dynamics

simulation techniques [16�,41�] provide structural infor-

mation at atomic level and are, therefore, expected to

have an important role in planning mutagenesis
www.sciencedirect.com
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experiments to modulate amyloid propensity. The ulti-

mate goal of these simulation methods is to help in

discovering small molecules which can interfere with

formation and accumulation of the toxic species [48�].
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