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ABSTRACT: We present a structural metric based on the Distribution of Reciprocal of Interatomic Distances (DRID) for
evaluating geometrical similarity between two conformations of a molecule. A molecular conformation is described by a vector of
3N orientation-independent DRID descriptors where N is the number of molecular centroids, for example, the non-hydrogen
atoms in all nonsymmetric groups of a peptide. For two real-world applications (pairwise comparison of snapshots from an
explicit solvent simulation of a protease/peptide substrate complex and implicit solvent simulations of reversible folding of a 20-
residue β-sheet peptide), the DRID-based metric is shown to be about 5 and 15 times faster than coordinate root-mean-square
deviation (cRMSD) and distance root-mean-square deviation (dRMSD), respectively. A single core of a mainstream processor
can perform about 108 DRID comparisons in one-half a minute. Importantly, the DRID metric has closer similarity to kinetic
distance than does either cRMSD or dRMSD. Therefore, DRID is suitable for clustering molecular dynamics trajectories for
kinetic analysis, for example, by Markov state models. Moreover, conformational space networks and free energy profiles derived
by DRID-based clustering preserve the kinetic information.

■ INTRODUCTION

Molecular dynamics (MD) simulations generate information of
protein motion at atomic level of detail and femtosecond time
resolution. Clustering of snapshots saved along MD trajectories
is almost always required for structural analysis and/or to
extract thermodynamics and kinetics. Usually, the snapshots are
clustered first according to geometric similarity, and the clusters
are then grouped into physically relevant states using kinetics-
preserving procedures, for example, the cut-based free energy
profile (cFEP) method1,2 or spectral clustering methods.3−5

Most often than not, the performance of the structural metric
will fundamentally affect the efficacy and efficiency of the
geometric and subsequent kinetic clustering.6

Coordinate root-mean-square deviation (cRMSD) is a
natural metric for quantifying the similarity of two
conformations.7,8 The cRMSD compares the Cartesian
coordinates of corresponding atomic nuclei in two conforma-
tions of a molecule ([(1/N)∑i = 1

N ((xi − ∼xi)
2 + (yi − ∼yi )

2 + (zi −
∼zi)

2)]1/2, where N is the number of the atoms). However, it
does not explicitly consider the distances between pairs of
atoms in the same conformation. Thus, cRMSD does not
necessarily correlate with energy, which is a function of
interatomic distances.9 Another disadvantage of cRMSD is that
the result relies on the optimal superposition of the
conformations being compared, which is more time-consuming
than the calculation of the root-mean-square deviation itself. To
speed up the process of superposition, Theobald recently
developed the quaternion-based characteristic polynomial
(QCP) method,10 which is 30−70 times faster than the eigen
decomposition methods.11−14 Another disadvantage of cRMSD
is that the value of the coordinates depends on the orientation
of the molecule. Therefore, it is inefficient to use Cartesian
coordinates in conformational searching across a database.

Another frequently used geometry-based metric is the
distance root-mean-square deviation (dRMSD). The dRMSD
([(2/N(N − 1))∑i = 1

N ∑j = 1
i−1 (dij − d͠ij)

2]1/2, where dij is the

distance between atom i and atom j) and its variants9,15−17 do
not need structural alignment, and show higher correlation with
energy9 than cRMSD because dRMSD is a function of
interatomic distances. The original dRMSD strongly weighs
large values of atomic distance. To reduce the overweight, in
the contact map method only the distances smaller than a
threshold are compared.16 Hole and Sander have proposed the
use of the percentage of change in distance to evaluate the
similarity.15 However, these variants may introduce new
problems, such as discretization for the contact map and
unsatisfactory triangular inequality for Hole and Sander’s
method.9 Moreover, dRMSD uses a larger amount of floating
numbers than do Cartesian coordinates (a total of N(N − 1)/2
and 3N, respectively, where N is the number of atoms used for
the comparison). In the majority of clustering algorithms, the
geometrical similarity between each new conformation and the
representative of individual clusters needs to be calculated. For
clustering a complex system whose kinetic network18 has a
large amount of clusters, dRMSD requires that the clustering
program uses a larger amount of memory for storing the
representatives of the clusters (in terms of distance matrices)
than cRMSD (in terms of Cartesian coordinates), or to
recalculate distance matrices from the Cartesian coordinates
when needed. Overall, both cRMSD and dRMSD have their
shortcomings. Evaluating the similarity among conformations is
often the bottleneck of performance in coarse-graining of MD
snapshots.
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In this Article, we propose an efficient method for measuring
the geometrical similarity between two conformations of a
macromolecule based on a one-dimensional array (vector) of
moments of Distribution of Reciprocal of Interatomic distances
(DRID). Each conformation is encoded in an orientation-
independent DRID vector, which has the same length as the
vector of Cartesian coordinates. The difference between two
conformations can be efficiently evaluated as the root-mean-
square deviation between the two DRID vectors. Because
DRID does not need superposition of two conformations, it is
about 5 times faster than the cRMSD version with the fast QCP
method. Because a shorter vector is used to represent a
conformation, DRID is about 15 times faster than dRMSD.
Furthermore, DRID uses an amount of memory similar to that
of cRMSD, which is much smaller than dRMSD for large
molecules. Moreover, the geometric distance measured by
DRID is a better estimate of kinetic distance than either
cRMSD or dRMSD, which indicates that DRID is an effective
structural metric for coarse-graining snapshots of MD
trajectories into geometrically similar clusters for kinetic
analysis.

■ METHODS

One important difference between DRID and previously
reported metrics is the use of the multiplicative inverse
(reciprocal) of the distance rather than the distance itself. If
two atoms are far away from each other, that is, separated by
several covalent bonds, their distance is strongly affected by
thermal motion because of the leverage effect (Figure 1). In

contrast, such thermal “noise” does not influence the very
similar interaction energy of pairs of distant atoms (which is
close to zero). To reduce but not completely neglect the effect
of large separations, reciprocals of distances are used to encode
the DRID descriptor vector. Note that variations of the
covalent bond lengths have little effect on the conformational
changes, but the fluctuations of their reciprocal would have a
large influence. Thus, the distances between pairs of atoms
separated by a single covalent bond are excluded from DRID
calculation. Two “sets” of atoms have to be defined for DRID
evaluation: a set of n centroids and a set of N atoms for distance
evaluation. Note that these two sets can be identical as in both
examples below. The centroids are the (sub)set of atoms in
nonsymmetric groups. In the process of measuring the
similarity of topologically different molecules,19 the selection
of centroids is based on values of discontinuous maximum/
minimum functions so that the centroids can “hop” from one
atom to the other in two similar conformations.20 The
alteration of centroids will lead to significantly different values
in the elements of the vector for two similar conformations. A
fixed set of atoms are chosen as centroids in DRID, which is
thus not affected by the centroid-hopping problem. The atoms
in symmetric groups (in proteins, e.g., hydrogen atoms in
methyl groups, the ortho-/meta- carbon atoms of the benzyl
and phenolic ring in Phe and Tyr side chains, respectively, as
well as the oxygen atoms in carboxyl groups) are neglected
because they introduce more noise than signal. An illustrative
example of DRID evaluation is shown in Figure 2. Three

moments of the distribution of reciprocal distances are
employed to characterize the essential features of atomic-
distance sets based on individual centroids. The first centroid-
based descriptor is the mean of the reciprocal of the distances μi [∑j(1/dij)]/(N − 1 − nbi), where dij is the distance of the
atom j from centroid atom i, N is the number of atoms, and nbi
is the number of atoms bonded to centroid i. The centroid i
and the atoms covalently bound to it are excluded from the
sum. The second descriptor is the square root of the second
central moment of the reciprocal of the same set of atomic
distances νi  {[∑j(1/dij − μi)

2]/(N − 1 − nbi)}
1/2. The third

descriptor is the cubic root of the third central moment of the
same distribution ξi  {[∑j(1/dij − μi)

3]/(N − 1 − nbi)}
1/3.

Figure 1. Leverage effect for large atomic distances. The distance
between the centroid and the atom A is a + da, where da is the
perturbation of the distance due to thermal motion. Accordingly, the
db and dθ are the perturbation of the distance b and the angle θ,
respectively. The perturbation of the distance c between the centroid
and the atom B, which is two bonds away, can be calculated as dc = [(a
− b cos θ)da + (b − a cos θ)db + ab sin θ dθ]/(a2 + b2 − 2ab cos
θ)1/2. The coefficient of the last term of uncertainty of dc has the same
order of magnitude as the size of the system and the distance from the
centroid. Therefore, the uncertainty of the distance increases with the
distance itself.

Figure 2. Schematic view of the DRID encoding process. The left
panel shows the three-dimensional model of the glycine−serine
dipeptide. The sequential identification of the atom is denoted on top
of each atom. The α carbon atoms (4th and 11th atoms) were chosen
as centroids (yellow spheres). The dij is the distance from atom i to
atom j. The formulas for calculating the components of the six-
dimensional DRID vectors are shown on the right panel.
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Thus, given a set of n atoms selected as centroids, each
conformation of the (macro)molecule is described by a DRID
vector of 3 × n orientation-independent descriptors. The
geometrical distance between two conformations of a (macro)-

molecule described by (μi, νi, ξi) and (μ∼i , ν∼i , ξ∼i), respectively, is
evaluated as the root-mean-square deviation of two DRID
vectors, which is {(1/3n)∑i = 1

n [(μi − μ∼i)
2 + (νi − ν∼i)

2 + (ξi −
ξ∼i)

2]}1/2 and has units of 1/distance.

■ RESULTS AND DISCUSSION

To evaluate the performance of DRID, we compared it to
cRMSD and dRMSD for two representative systems: (1) the
explicit solvent MD simulations of the complex of the aspartic
protease β-secretase (BACE) and an octapeptide substrate,21,22

and (2) the implicit solvent23 MD simulations of reversible
folding of a 20-residue antiparallel β-sheet peptide
(Beta3s).24,25

Explicit Solvent Simulations of the BACE−Substrate
Complex. The MD trajectories (136 710 snapshots) from the
recently published simulations of the complex of BACE with an
octapeptide substrate22 are used as a first test of DRID. The set
of centroids included the 144 C, N, O, and S atoms in
nonsymmetric groups in the BACE active site (residues 32−35,
71−73, 76, 198−199, 227−228, and 231−232) and substrate
(except for Phe(P4′), which undergoes large fluctuations21 and
does not interact with BACE). The set of atoms for distance
evaluation consisted of the same 144 non-hydrogen atoms.
Each MD snapshot was first encoded in a 432-dimensional
DRID vector. The WORDOM implementation of the leader-
like clustering algorithm26,27 based on DRID metric with a

cutoff 1.8 × 10−3 Å−1 yielded 1603 clusters, and 50 283
transitions between them were observed in the MD sampling.
These clusters and transitions are depicted as nodes and links
of the conformational space network (Figure 3), respectively.
The topology of this network is consistent with the one based
on dRMSD clustering (Figure 4 in ref 22). Note that the DRID
cutoff was chosen to obtain a number of nodes and links similar
to that in the previous study. To show that the clusterings
obtained by DRID and dRMSD are quantitatively comparable,
the lengths of hydrogen bonds critical for catalysis are plotted
along the natural reaction coordinate of the cFEP (Figure 4).
The conformations in individual basin identified by cFEPs
based on either DRID or dRMSD show similar distributions of
hydrogen-bond lengths. As an example, for both DRID and
dRMSD clustering, all snapshots in the yellow and blue basins
in Figure 3 exhibit a hydrogen bond between the side chains of
Ser35 and Asp32 (upper-left panel of Figure 4), while in about
20% of the snapshots of red and green basins the hydrogen
bond is lost. The consistency in conformational space networks
and cFEPs obtained by DRID- or dRMSD-based clustering
indicates that DRID can be used for structurally clustering
snapshots into mesostates for further kinetic analysis.
To test the robustness of DRID, different clustering

thresholds were used for building the conformational space
network and plotting the cFEP. This analysis shows that DRID
has good self-consistency as the kinetic ordering of basins is
robust with respect to the choice of threshold (Figure S1 in the
Supporting Information).

Implicit Solvent Simulations of the Structured
Peptide Beta3s. Folding of the 20-residue antiparallel β-
sheet peptide Beta3s (with amino acid sequence

Figure 3. Network analysis of the BACE−substrate complex. The basins on the free energy landscape of the BACE−substrate complex identified by
cFEPs are shown by different colors. The cFEPs plotted using the representatives of each of the four largest basins (red, blue, brown, and yellow) are
shown as insets in the four corners. In each cFEP, the basin used as the reference state is marked by the gray rectangle. In the conformational space
network (middle of the figure), nodes and links are conformations (i.e., clusters obtained by DRID metric) and direct transitions in the MD
trajectory, respectively. The size of each node is proportional to its statistic weight. The forced directed layout of nodes is determined by the
Fruchterman−Reingold algorithm.34 The overlapped basins in the cFEP have similar kinetic distance from the reference state; for example, in the
two insets on the right, red and green basins overlap because their kinetic distances from either blue or yellow basins are similar.
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TWIQNGSTKWYQNGSTKIYT in single-letter code) has
been extensively investigated by MD simulations.2,18,25,28−33

By using an implicit solvent model,23 Beta3s folds reversibly
from a heterogeneous denatured ensemble to its native
structure, a three-stranded antiparallel β-sheet.24 The free
energy profile of Beta3s calculated upon clustering by DRID is
compared to the profiles calculated upon clustering by cRMSD2

or dRMSD (Figure 5). The 159 unsymmetrical heavy atoms of
Beta3s (out of 215 atoms) were used for calculating cRMSD,
dRMSD, and DRID. A trajectory of Beta3s, saved every 0.2 ps
for 1 × 108 snapshots, was used as input for coarse-graining.
The kinetic networks obtained by cRMSD clustering (with 2.5
Å cutoff) and DRID clustering (with 5.5 × 10−3 Å−1 cutoff)
show a high agreement. The difference in the height of the

barrier that separates the native basin from other parts of the
free energy landscape is 0.1 kcal/mol, and the difference in the
population of the native state is 0.1%. The cFEP calculated by
dRMSD (with 2.0 Å cutoff) is qualitatively consistent with the
cRMSD-cFEP and DRID-cFEP, but the height of the barrier
separating the native basin from other parts of the free energy
landscape is 0.43 kcal/mol lower. As for the BACE−substrate
complex, the cFEP of Beta3s calculated upon DRID clustering
is robust with respect to the choice of the cutoff in the range
0.005−0.0055 Å−1, while a cutoff value of 0.006 Å−1 yields a
similar shape of the cFEP but does not preserve the barrier to
exit from the folded state (Figure S2 in the Supporting
Information). As in the case of cRMSD and dRMSD, it is
difficult to suggest a rule of thumb for the cutoff. For practical

Figure 4. Structural characterization of cFEP basins of the BACE−substrate complex. The cFEP and the length of seven hydrogen bonds in the
representative snapshots of individual clusters are depicted in solid lines and dots, respectively. The names of atoms, between which the distances are
measured, are denoted on top of each figure; for example, the dots in the top-left figure present the distances between atoms HG1 in Ser35 and OD1
in Asp32. The reference state of the cFEP is the most populated node, which is inside the yellow basin in Figure 3. The cFEPs were determined by
clustering using either the dRMSD or the DRID. In both cases, conformations with similar distributions of hydrogen-bond distance were grouped
together.
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applications, it is necessary to cluster several times using
different cutoffs, and directly compare the kinetic properties
derived from the network with those derived from the
simulation trajectory.2 This “trial and error” procedure can
take advantage of an efficient metric like DRID, as well as a fast
clustering algorithm.6

Correlation among Geometrical Distances. The scatter
plots of geometrical distances measured by cRMSD, dRMSD,

and DRID are shown in Figure 6. The Pearson correlation
coefficients among each of the three pairs of distances are larger
than 0.85, which indicates these three distances are highly
correlated. Pairwise distances calculated by DRID correlate
slightly more with those calculated by dRMSD than cRMSD as
both DRID and dRMSD use intrastructure distances, while
cRMSD requires structural alignment and employs distances
between pairs of atoms in different structures.

Figure 5. Comparison of cFEPs of Beta3s derived from cRMSD, dRMSD, and DRID coarse-graining. The top panels and bottom left panel show the
colored DSSP35 strings of the cluster representatives, which are arranged according to the reaction coordinate of the corresponding cFEP (bottom
right panel). The y-axis label is the Beta3s sequence, and the legend of colors for different secondary structure elements in the traces is shown in the
bottom. For the three cFEPs based on different clustering methods, the native state and the helical state are the two largest basins, which are denoted
by cartoon models.

Figure 6. Correlation among geometrical distances. A set of 104 pairs of snapshots were randomly selected from a 20 μs trajectory of Beta3s for
calculating the three geometrical distances. The Pearson correlation coefficients of pairwise metrics are denoted on top of each panel. The units of
cRMSD and dRMSD are Å, while the units of DRID are Å−1.
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Relation between Kinetic Distance and Geometrical
Distances. The kinetic distance between two MD snapshots
saved along a continuous trajectory was estimated as the
simulation time needed to evolve from one to the other.
Geometrical distances measured by cRMSD, dRMSD, and
DRID show a similar relation to kinetic distance for Beta3s
(Figure 7) and the BACE−substrate complex (Figure S3 in the
Supporting Information). The value of the geometric distance
increases fast within about 1 ps (a time interval along which the
dynamics is still in the ballistic regime), and reaches a plateau
when the kinetic distance is larger than about 100 ps. Because
the absolute values of the three structural metrics are different,
the coefficient of variation, which is defined as the ratio of the
standard deviation to the mean, is used to compare the metrics.
A large coefficient of variation implies large uncertainty in the
relation between the corresponding geometrical distance and
the kinetic distance. For kinetic distances above 1 ps, the
coefficient of variation of DRID is about 30% lower than
dRMSD and 40% lower than cRMSD (Figure 7), which shows
that for conformation pairs with a fixed kinetic distance, the

dispersion of the DRID-based distances is smaller than in the
case of the other two structural metrics.
It is interesting to evaluate how the convergence of a kinetic

property, for example, the folding time, depends on the metric
used for clustering. For each of the three metrics, the mean first
passage time from the helical basin of Beta3s to the folded state
was calculated for each of a set of conformational space
networks generated by clustering simulation trajectories of
increasing length. The plots of mean first passage time as a
function of simulation length show similar convergence
properties for the three metrics with the values obtained by
DRID always closer to the converged value than the other two
metrics (Figure S4 in the Supporting Information).

Timing and Memory Usage. Both dRMSD and DRID do
not need to overlap the conformations; they just require the
calculation of the root-mean-square deviation of two descriptor
vectors to estimate the geometric difference. Therefore, before
evaluating the structural similarity, for dRMSD and DRID the
descriptor vector of each conformation has to be calculated. In
the benchmark test cases, pairwise structural distances of
13 671 conformations of the BACE−substrate complex and

Figure 7. Relation between geometrical distance and kinetic distance for Beta3s conformations. All heavy atoms in nonsymmetric groups were used
to calculate cRMSD, dRMSD, and DRID. (Top) Geometrical distance averaged over 105 pairs of conformations at each value of the kinetic distance.
The conformations were extracted from a 20 ns trajectory, which was randomly selected from a 20 μs MD trajectory of Beta3s. Quantitatively similar
results were obtained for other segments of the trajectory (data not shown). In the top-right panel, the x-axis is zoomed in at the kinetically ballistic
regime (i.e., low picosecond kinetic distance between two conformations). The error bars (red) denote the standard deviations of the geometrical
distances of pairs of conformations at a given kinetic distance. (Bottom) Mean value of the coefficient of variation of the geometric distance at
individual kinetic distances. The error bars denote the standard deviation of the coefficient of variation across 10 different segments of the trajectory.
The x-axis is zoomed in at the kinetically ballistic regime in the bottom-right panel. The smaller coefficient of variation observed for DRID (at time
intervals larger than 0.8 ps) indicates that the DRID-based distance is closer to the kinetic distance than cRMSD or dRMSD metrics. Similar results
were obtained for the BACE−-substrate complex (Figure S3 in the Supporting Information).
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10 000 conformations of the Beta3s are calculated. The
aforementioned atomic subsets of both systems (144 atoms for
the BACE−substrate complex, 159 atoms for Beta3s) were
used in all of the three metrics. The fast QCP method,10 which
is the fastest approach in public literature, was used for
calculating cRMSD. On a single core of the Intel i7-950 CPU,
for both test cases, DRID is about 4.5 times faster than QCP-
based cRMSD and is about 17 times faster than dRMSD (Table
1). The dRMSD needs to load more floats into memory than

cRMSD and DRID and is slower than the other two metrics
because both cRMSD and DRID need to compare the vector
containing 3 × n floats, whereas dRMSD needs to compare the
vector of n(n − 1)/2 floats, where n is the number of
unsymmetrical atoms.
For dRMSD, the number of atoms involved in clustering has

to be limited because a high number of atoms, as in big proteins
or macromolecular assemblies, make calculation of all
interatomic distances prohibitive. For DRID, an approximation
similar to “non-bonded interaction cutoff” used in MD energy
calculation can be applied to speed up the interatomic distance
calculation: any reciprocals of the distance larger than a cutoff
can be approximated to zero. In both of our test systems, which
contain about 150 atoms, this cutoff is not necessary.

■ CONCLUSIONS
We have presented a one-dimensional array of moments of
DRID, which is useful for the efficient evaluation of the
geometrical similarity between pairs of conformations of a
(macro)molecule or molecular complex. The DRID vector is
suitable for coarse-graining MD snapshots into geometrically
similar clusters for kinetic analysis because the root-mean-
square deviation of two DRID vectors better reflects the kinetic
distance (i.e., the temporal separation along the trajectory) than
either cRMSD or dRMSD. Because DRID does not need
structural alignment and encodes a conformation in a much
shorter vector than dRMSD, the comparison of conformations
via DRID metric is about 4.5 times faster than the fastest
cRMSD method in previous literature and 17 times faster than

dRMSD. The evaluation of the DRID deviation of 108 pairs of
conformations of a peptide (or enzyme binding site) of about
150 atoms can be carried out in one-half a minute on a single
core of a mainstream processor. Importantly, for large
molecules, a neighbor list similar to the nonbonding list in
molecular mechanics programs could be used to restrict the
calculations of distance reciprocals to those pairs of atoms
within a predefined cutoff value. The exclusion of distant pairs
of atoms is appropriate for DRID as distance reciprocals are
negligible at large separation.
The orientation-independent DRID vector can be straight-

forwardly implemented into a recently published tree-based
algorithm,6 which is superior to leader-like algorithm for
constructing conformational space network. The DRID vector
can also be efficiently used in database searching algorithms
(e.g., balanced trees, hashing) for the efficient identification of
conformations that are similar to a query conformation.
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